Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610L/fall2005

School of Computer Science
University of Central Florida

COP 4610L: Threading Part 1 Page 1 Mark Llewellyn ©

&

Introduction to Threads Iin Java

In state-of-the art software, a program can be composed of
multiple independent flows of control.

A flow of control is more commonly referred to as a process or
thread.

In most of the Java programs that you’ve written (probably)
there was a single flow of control. Most console-based
programs begin with the first statement of the method main()
and work forward to the last statement of the method main() .

Flow of control is often temporarily passed to other methods
through invocations, but the control returned to main() after

their completion.

Programs with a single control flow are known as sequential
processes.

p
COP 4610L: Threading Part 1 Page 2 Mark Llewellyn © @_ﬁ

Introduction to Threads In Java (cont.)

Java supports the creation of programs with concurrent flows of
control. These independent flows of control are called threads.

Threads run within a program and make use of that program’s
resources in their execution. For this reason threads are also
called lightweight processes (LWP).

The ability to run more than one process simultaneously is an
Important characteristic of modern OS such as Linux/Unix and
Windows.

— The following two pages show screen shots of a set of
applications running on my office PC as well as the set of OS and
applications processes required to run those applications.

p
COP 4610L: Threading Part 1 Page 3 Mark Llewellyn © @_ﬁ

£l Windows Task Manager

Applications running on

File Opkions View Windows Help my office PC
Applications |F‘r|:n:esses | Performance | Metworking |
Task Status
{7 Microsoft PowerPaint - [threads - part 1] Funning
Eljthreads - part 1 Funning
@Micmsuﬂ: Office OneMoke 2003 - Windows taskbar Running
&% Eudara - [In] Running
bcnp 46100 Running
< IE
End Task, l [Switch To] [Mew Task. ..]
Processes: 43 CPU Usage: 3% Comrmit Charge; 308M | 1248M
COP 4610L: Threading Part 1 Page 4 Mark Llewellyn ©

E Windows Task Manager

File ©Options Wiew Help
&pplications | Processes | Petrformance | Mebworking
Image Mame PID User Mame CPU | Mem Usage IJSER, CObjects e
jGRASPjava.exe 3763 markl (] 4,144 K 26
Eudora.exe
wispkis.exe 3376 markl] 3,756 K a7 '\\\
TASKEBAR. . exe Jz60 markl oo 2,872k 22 Some Of the processes
POWERPMT.ERE 2863 markl] 14,096 K 132 .) .
TEXPLORE.EXE 2764 mark oo 6,284 K 125 running the applications
jgrasp,exe 2664 markl] 2,624 K 16 b o o
wacl, exe 2472 markl] 5,228 K G runmng on my Oﬁ:l ce PC
CCApD EXE 1992 markl] FE32 K 4
SPOOLEY EXE 1836 SYSTEM an 5,824 k]
TASKMGR, EXE 1724 markl] 1,972k 116
gttask, exe 1696 markl] Z2,092 K z
CcEvEMar.exe 1684 SYSTEM] 2,212 K]
winampa.exe 1628 markl oo 1,950 K 2
cCoetMar.exe 1600 SYSTEM] 3,948 K]
SWCHOST.EXE 1516 LoCalL SERYICE] 4,132k]
mm_kray . exe 1500 markl] 3,836 K 9
SMTHOST.EXE 1484 MNETWORK SERNICE an 2,116 K]
mrkask. eee 1428 markl nn 2988 K 1 b’
Show processes From all users
Processes: 45 CPU Usage: 0% w_ Commit Charge: 252M [1246M

N

CPU working hard!!!

COP 4610L: Threading Part 1 Page 5 Mark Llewellyn ©

Using Threads To Improve Performance

One Thread

Thread 1 Task 1 Wait for 1/0O Task 1 Wait for 1/0 Task 2

Time —

Two Threads
Thread 1 Task 1 Wait for /O Task 1 Wait for I/0 ;
Thread 2 (Idle) | Task 2 | (Idle) | Task 2 | ;
Time —» E E E E E

¢ 5

COP 4610L: Threading Part 1 Page 6 Mark Llewellyn © @]

Improving Performance With Multithreading

« As the diagram on the previous page implies, applications
that perform several tasks which are not dependent on one
another will benefit the most from multithreading.

« For example, in the previous diagram, Task 2 can only be
overlapped with Task 1 if Task 2 doesn’t depend on the
results of Task 1.

« However, some overlap between the two tasks may still be
possible even if Task 2 depends on the results of Task 1. In
this case the two tasks must communicate so that they can
coordinate their operations.

p
COP 4610L: Threading Part 1 Page 7 Mark Llewellyn © @_ﬁ

Improving Performance With Multithreading
(cont.)
« Writing multithreaded programs can be tricky and
complicated, particularly when synchronization between
threads is required.

e Although the human mind can perform many functions
concurrently, people find it difficult to jump between parallel
trains of thought.

« To see why multithreading can be difficult to program and
understand, try the experiment shown on the following page.

p
COP 4610L: Threading Part 1 Page 8 Mark Llewellyn © &]

Multithreading Experiment

In this chapter, we
introduce Swing
components that
enable developers to
build functionally rich
user interfaces.

Page 1

The experiment: Try reading the pages above concurrently

The Swing graphical
interface components
were introduced with the
Java Foundation Classes
(JFC) as a downloadable
extension to the Java 1.1
Platform, then became a
standard extension with
the Java 2 Platform.

Page 2

Swing provides a more
complete set of GUI
components than the
Abstract Windowing
Toolkit (AWT), including
advanced features such
as a pluggable look and
feel, lightweight
component rendering
and drag-and-drop
capabilities.

by Page 3

reading a few words from the first page, then a few words from the
second page, then a few words from the third page, then loop
back and read a few words from the first page, and so on. Does
anything make sense? Can you construct a single sentence from

what you have read?

Can you remember on which page a

particular word appeared? Can you even remember when you get
back to the first page where you left off?

COP 4610L: Threading Part 1

Page 9

Mark Llewellyn ©

Typical Multithreaded Applications
Used to improve the performance of applications which

require extensive 1/O operations.

Useful in improving the responsiveness of GUI-based
applications.

Used when two or more clients need to run server-based
applications simultaneously.

Note: on a single CPU machine, threads don’t actually execute
simultaneously. Part of the JVM known as the thread scheduler time-slices
threads which are runnable (we’ll see more of this in a bit) giving the
Illusion of simultaneous execution.

p
COP 4610L: Threading Part 1 Page 10 Mark Llewellyn © @_ﬁ

This statement starts
thread A. After starting
thread A, the program
continues with the next
statement.

Multithreaded Program
{

statement 1;
statement 2;

statement x;

Thread A
{

A statement 1;
A statement 2;

A statement m;

statement y;

A multithreaded program
ends when all of its
individual flows of control
(threads) end.

statement z;

This statement starts thread
B. After starting the thread,
the program continues with

the next statement.

A statement n;

}

Thread B

Thread C

This statement in
thread A starts thread
C. Thread A continues
with next statement.

{

}

C statement 1;
C statement 2;

C statement t;

{

B statement 1;
B statement 2;

statement r;

}

COP 4610L: Threading Part 1

Page 11

.
Mark Llewellyn © @_ﬁ

Thread A

Thread B

Thread C

Thread Execution in a Multiprocessor Environment

Thread C -

Thread Execution in a Uniprocessor Environment

COP 4610L: Threading Part 1 Page 12 Mark Llewellyn ©

he Java Thread Class

Creates a default thread.

java.lang.Runnable

AN

Creates a new thread to run the target object

java.lang.Thread

Invoked by the JVM to execute the thread. You must override this

+Thread() —
+Thread (target: Runnable)

method and provide the code you want your thread to execute in your
thread class. This method is never directly invoked by a the runnable
object in a program, although it is an instance method of a runnable

+run(): void <—

+start(): void —
J—

+interrupt(): void

+isAlive(): boolean «— |
+setPriority(p: int): void «— |
+join(): void «— |

+sleep(millis: lonqg): void «

object.

|| Starts the thread that causes the run() method to be invoked by the JVM

| Interrupts this thread. If the thread is blocked, it is ready to run again.

|| Tests if the thread is currently running.

|| Sets priority p (ranging from 1 to 10) for this thread.
— | Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

+yield(): void <

Causes this thread to temporarily pause and allow other threads to execute

+isInterrupted(): boolean <
+currentThread(): Thread «___

Tests if the current thread has been interrupted

1 R

eturns a reference to the currently executing thread object.

COP 4610L: Threading Part 1

[
Page 13 Mark Llewellyn © g);

Java Classes and Threads

Java has several classes that support the creation and
scheduling of threads.

The two basic ways of creating threads in Java are:
— 1) extending the Thread class
— or 2) implementing the Runnab I e interface.

(Both are found in package java.lang. Thread actually
Implements Runnable.)

We’ll also look at a slightly different technique for

creating and scheduling threads later using the
Java.util.Timer and java.util._.TimerTask

classes.

p
COP 4610L: Threading Part 1 Page 14 Mark Llewellyn © @_ﬁ

Java Classes and Threads (cont)

The following two simple examples, illustrate the differences in
creating threads using these two different techniques.

The example is simple, three threads are created, one that prints
the character ‘A’ twenty times, one that prints the character ‘B’
twenty times, and a third thread that prints the integer numbers
from 1 to 20.

The first program is an example of extending the thread class.
The second program is an example of using the Runnable
Interface. This latter technique iIs the more common and
preferred technique. While we will see more examples of this
technique later, this simple example will illustrate the
difference in the two techniques.

p
COP 4610L: Threading Part 1 Page 15 Mark Llewellyn © @_ﬁ

//ICustom Thread Class
Public class CustomThread extends Thread

{...
public CustomThread(...)
{

}

{
-

} /lend CustomThread Class

//Override the run method in Thread
/[Tell system how to run custom thread
public void run()

Template for defining a thread class by
extending the Thread class. Threads
thread1 and thread2 are runnable objects
created from the CustomThread class.
The start method informs the system that
the thread is ready to run.

/IClient Class to utilize CustomThread
Public class Client

{...
public void someMethod()

{

/Icreate a thread
» CustomThread thread1 =

new CustomThread(...);
//start a thread
thread1.start();

/[create another thread

» CustomThread thread2 =

new CustomThread(...);
//start another thread
thread2.start();

}

} /lend Client Class

COP 4610L: Threading Part 1

Page 16

”
Mark Llewellyn © g};

/[Custom Thread Class
Public class CustomThread implements Runnable

{.

public CustomThread(...)
{ \

}

/lImplement the run method in Runnable
/[Tell system how to run custom thread
public void run()

{
-

} /lend CustomThread Class

Template for defining a thread class by
implementing the Runnable interface. To
start a new thread with the Runnable
interface, you must first create an instance of
the class that implements the Runnable
interface (in this case custhread), then use
the Thread class constructor to construct a
thread.

/IClient Class to utilize CustomThread
Public class Client

{.

public void someMethod()

{

[T CustomThread custhread =

new CustomThread(...);
/[create a thread
Thread thread =
newThread(custhread);

/[start a thread
thread.start();

}

} /lend Client Class

/lcreate an instance of CustomThread

COP 4610L: Threading Part 1

Page 17 Mark Llewellyn ©

/[Class to generate threads by extending the Thread class
public class TestThread {
// Main method
public static void main(String[] args) {
Il Create threads
PrintChar printA = new PrintChar('a’, 20);
PrintChar printB = new PrintChar('b’, 20);
PrintNum print20 = new PrintNum(20);

h .
/| Start threads / Start thread execution

. after a 0 msec delay
print20.start(); C diatel
orintA.start() (i.e., immediately)

printB.start();

}
}

/I The thread class for printing a specified character a specified number of times

class PrintChar extends Thread { «
private char charToPrint; // The character to print
private int times; // The times to repeat

Extension of the Thread
class

// Construct a thread with specified character and number of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;

times = t;

}
e

COP 4610L: Threading Part 1 Page 18 Mark Llewellyn © gjj

/I Override the run() method to tell the system what the thread will do

public void run() {
for (inti=0;i <times; it++)
System.out.print(charToPrint);

}
}

/I The thread class for printing number from 1 to n for a given n
class PrintNum extends Thread {
private int lastNum;

// Construct a thread for print 1, 2, ... i

public PrintNum(int n) {
lastNum = n; Overriding the run method

} in the Thread class

/] Tell the thread how to run
public void run() {
for (inti=1;i<=lastNum; i++)
System.out.print(" " + i);
}

} /lend class TestThread

COP 4610L: Threading Part 1 Page 19 Mark Llewellyn © e

Project Messages Settings Window Tools UL

iles | |50rt By Hame -
» | % | R || Bookmarks

rogram Files\Javaijdk1.5.0'bin R

Chat Room Case Study ;

clocks -

¥

Help

TestThread.java C:'Program Files\Java'jdk1.5.00hin - jGRASP CSD {Java)

FIIE Edit VYiew Templates Cumpller

B0y oBEE &

Run Workbench Help

//Class to generate threads by extending read
public class TestThread {
A4 Main method

TestThre...

TestRunmn...

Displayal...

mpile Messages erRASP Messages rRun 110 |

End - ——--1GBA3P exec: java TestThread /

e lab Zab Zab 4ab fab 6ab Yab Sab 9ab 10ab
Clear ———-jGRASP: operation complete.

Help - ——--JGEASP exec:
- ———-—]GBRASPF exec:
- ———-—-]GRASP exec:
r ———-]GRA3P exec:

- ——-—J]GBA3PF exec:

ww |

java TeztThread

labh 2ab 3ab 4ab Sab 6ab 7ab 8ab 9ab 10ahk
-——-JGRAZP: operation complete.

jawva TeztThread

lba Zba 3ba 4ba Sha &ba 7ha 8ba %ha 1l0ba
—-———jGR43P: operation complete.

jawva TestThread

labh Zab 3ab 4ab S5ab 6ab 7ab Sab Sab 10ab
————JGEAZP: operation complete,

java TeztThread

lab Zab 3ab 4ab Sab 6ab Vab Sab Sab l0ab
-—--JGRASP: operation complete.

java TeztThread

llab lzZab

llabh 1Zah

llba 1:zZba

llabh 1Zahb

llab lzZab

Sample executions of class
TestThread. Notice that the output

from the three threads is interleaved.
Also notice that the output sequence

is not repeatable.

l3ab ldab l5ab léab 17ab lSab 12aba Z0b

13ab l4ah 15ab l6a 17ba 18ba 19%babba Z0

13ba l4ba 15ba 1l6ba 17ha 18ba 15%ba Z0ba

l3ab l4ah 15ab léab 17ab 1Sab 19a&b Z0ab

l3ab ldab l5ab léab 17ab lSab 12a&ab Z0ab

a lba 2ba 3ba 4dba Stba 6ba Tha 8ba %ba 10ba 1llba 12Zba 13ba l4dba 15ba loba 17ba 18ba 19%bha 20b
-——-JGRAZP: operation complete.

a

//Class to generate threads by implementing the Runnable interface
public class TestRunnable {

Il Create threads

Thread printA = new Thread(new PrintChar('a’, 20));

Thread printB = new Thread(new PrintChar('b", 20));

Thread print20 = new Thread(new PrintNum(20));

/ Main method simple
public static void main(String[] args) { creates a new

new TestRunnable(); Runnable object and
} terminates.

public TestRunnable() {

/[Start threads _ .
print20.start(); - Runnable object starts
printA.start(); thread execution.
printB.start();

}

/I The thread class for printing a specified character in specified times

class PrintChar implements Runnable { <
private char charToPrint; // The character to print
private int times; // The times to repeat

Implements the
Runnable interface.

/I Construct a thread with specified character and number of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;

times = t;

}—l—_l—

COP 4610L: Threading Part 1 Page 21 Mark Llewellyn © @j

/I Override the run() method to tell the system what the thread will do
public void run() {
for (inti=0;i<times; i++)
System.out.print(charToPrint);
}
}

Il The thread class for printing number from 1 to n for a given n
class PrintNum implements Runnable {
private int lastNum,;

/I Construct a thread for print 1, 2, ... i
public PrintNum(int n) {
lastNum = n;

} Override the run method for
both types of threads.
/I Tell the thread how to run

public void run() {
for (inti=1;i<=lastNum; i++)
System.out.print(" " + i);
Y
}

} /lend class TestRunnable

COP 4610L: Threading Part 1 Page 22 Mark Llewellyn © e

Project Messages Settings Window Tools UL Help

iles w | |Sort By Hame - : BasicTestRunnahle.jaua C:'Program Files'\Java'jdk1.5.0'%hin - jJGRASP CSD {Java)
4+ | R || Bookmarks : File Edit Yiew Templates Compiler Run Workbench Help

hgtam Hiles kvl Ziim Il TR AV aEEE il E XDHB e
Chat Room Case Study || Ml || Lt | Pt] TR TN e | T AL | P - ™ || | ||| Bl (|)| Bl
clocks JfClass to illustrate threads created wia Funnable interface

public class BasicTestFunnable
com
images [4] Il Y)
RaE e s I s Sample executions of class

OVS BLK Line: ol: ode: op: .
.............................. e I || | g TestRunnable. Notice that the
owse | Find | Debug | Workbench | || [B]TestThre.. |[G]BasicTest... |[§]BasicCloc.. ﬁplaym... output from the three threads is
........................... e e e e Interleaved- AISO notlce that the
mpile Messages r]GHASP Messages |/Fum 1D | ’/ output sequence is not repeatable.
End [----iGRASP: operation complete.
— - ———-—-JGREASP exec: jawa BasicTestRunnable
Clear
— a lha Zba 3ba 4ha 5ba 6ba 7ha 8b 9 10 11 12 13 14 15 16 17 15 19 Z0babababababhahahahahabahba
Help L —----]GBA3P: operation complete.

- ———--JGBALSP exec: java BasicTestBunnahle

lba Zba 3ba 4ba Sha 6ba Yha Sha Sbha 10ba llba l1Zba l13ba ldba 15ba leba 17ba 18ba 1%ba Z0ba
-——-]GRASP: operation complete.

- =—==-=]GBA3F exec: java BasicTestBunnahle

labh 2Zab 3ab 4dab Sab Gab 7aba 8ba 9ha 10ba llba 1Zba 13ba ldha 15ba 16ba 17ha 18ba 15ha Z0h
—-——-jGRASP: operation complete.

- ——--]GBA3PF exec: java BasicTestBRunnahle

a lha 2ba 3ba 4dba Sha 6ba Tha 8ba %ha 10ba 1lba 12ba 13bka ldba 15ba lobha 17ba 18bka 19%ha 20b
—-=—=JGRA3P: operation complete,

- ———-—-JGREARP exec: jawa BasicTestFunnable

a la Za 3ab 4ab 5ab 6ab 7ab Sab Sab 10ab 1llab 1Zab 13ab 14ab 15ab 16ab 17ab 18ab 19abh Z0bbb
————JGEASP: operation complete,

|

Some Modifications to the Example

To illustrate some of the methods In the Thread class, you
might want to try a few modifications to the TestRunnable
class in the previous example. Notice how the modifications

change the order of the numbers and characters in the output.

Use the y1eld() method to temporarily release time for other
threads to execute. Modify the code Iin the run method In

PrintNum class to the following:

public void run() {
for (inti=1;i <= lastNum; i++) {
System.out.print(" " + i);
Thread.yield();
}

Now every time a number is printed, the print20 thread yields, so

each number will be followed by some characters.

COP

|

4610L: Threading Part 1 Page 24 Mark Llewellyn ©

Some Modifications to the Example (cont.)

The sleep(long mill1s) method puts the thread to sleep

for the specified time in milliseconds. Modify the code in the
run method in PrintNum class to the following:

public void run() {
for (inti=1; i <= lastNum; i++) {
System.out.print(" " + i);

try {
if (i >= 10) Thread.sleep(2);
}

catch (InterruptedException ex) { }

}
}

— Now every time a number greater than 10 is printed, the print20
thread is put to sleep for 2 milliseconds, so all the characters will
complete printing before the last integer is printed.

p
COP 4610L: Threading Part 1 Page 25 Mark Llewellyn © @_ﬁ

Some Modifications to the Example (cont.)

 You can use the Join() method to force one thread to wait for
another thread to finish. Modify the code in the run method In
PrintNum class to the following:

public void run() {
for (inti=1; i <= lastNum; i++) {
System.out.print(" " + i);

try {
if (i == 10) printA.join();
}

catch (InterruptedException ex) { }

}

}

— Now the numbers greater than 10 are printed only after thread
printA is finished.

I ———————————————————————_———

COP 4610L: Threading Part 1 Page 26 Mark Llewellyn © %}j

Other Java Classes and Threads

. We noted earlier that Java has several different classes that

support the creation and scheduling of threads. Classes
Java.util.Timer and java.util.TimerTask are

generally the easiest to use. They allow a thread to be created
and run either at a time relative to the current time or at some
specific time.

« We’ll look at these classes briefly and give a couple of
examples.

e ——————
('.

COP 4610L: Threading Part 1 Page 27 Mark Llewellyn © @j

Java Classes and Threads (cont.)

Class Timer overloads the schedule() method three times
for creating threads after either some specified delay or at some
specific time.
— public void schedule(TimerTask task, long m);
 Runs task.run() after waiting m milliseconds.

— public void schedule(TimerTask task, long m, long n);

 Runs task.run() after waiting m milliseconds, then repeats it every n
milliseconds.

— Public void schedule(TimerTask task, Date t);

* Runs task.run() at the time indicated by date t.

By extending the abstract class TimerTask and specifying
a definition for its abstract method run(), an application-

specific thread can be created.

p
COP 4610L: Threading Part 1 Page 28 Mark Llewellyn © @_ﬁ

Example — Thread Execution After a Delay

The code listing on the following page gives a very simple
example of executing a thread after a delay (using the first
schedule() method from the previous page).

The thread in this example, simply prints a character 10
times and then ends.

Look at the code and follow the flow, then execute it on your
machine (code appears on the course webpage).

p
COP 4610L: Threading Part 1 Page 29 Mark Llewellyn © &]

//displays characters iIn separate threads

import java.util_*;

public class DisplayCharSequence extends TimerTask {
private char displayChar;
Timer timer;

//constructor for character displayer
public DisplayCharSequence(char c){

displayChar = c; Start thread execution
timer = new Timer(); after a 0 msec delay
timer.schedule(this, 0); (i.e., immediately)
+
//display the occurrences of the character
public void runQ) { —~—| A subclass implementation of
for (int 1 = 0; 1 < 10; ++i1) { TimerTask’s abstract method
System.out.print(displayChar); run() has typically two parts —
}_ 10)- first part is application specific
timer.cancel(); (what the thread is supposed to
¥ do) and the second part ends
n the thread.
//main

public static void main (String[] args) {
DisplayCharSequence sl new DisplayCharSequence(“M?);
DisplayCharSequence s2 new DisplayCharSequence(“A%);
DisplayCharSequence s3 new DisplayCharSequence(“R?);
DisplayCharSequence s4 new DisplayCharSequence(“K?);

}
}

p
COP 4610L: Threading Part 1 Page 30 Mark Llewellyn © @_ﬁ

Project Messages 5Settings Window Tools UL Help

| .

‘lles w | |Sort By Hame w (K DisplayCharSequence.java C:Program Files\Javaijdk1.5.00hin - jGRASP C5D {Java) &]
= | 4 | B || Bookmarks : FIIE Edlt ‘-J"ew Templates Cumpller Fum Wurkhent:h Help
rogram Files\Javajdk1.5.0'bin] F
currentWeather java s
d wth ik Example of creating threads by extending TimerTask class
EHMEL- e /4 Displays characters in separate threads
DisplayCharSequence.class | =| import jawva.util.*:
DisplayCharSeguence.java public class DisplayChariemquence extends TimerTask |
- private char displavChar:;
D!splayﬂuenﬂesultsﬁ.class Tinet Piaep:
DisplayOueryResults $2.class
DisplayOueryResults $3.class ffoonatructor for character displayer
DisplayQuenyResults $4.class public DisplayChariequence(char clf{
Dical Kts$5.cl displawChar = c;
!Sp ayQueryResults35.class timer = new Timer():
DisplayQueryResults.class timer.schedule(this, 0):
DisplayQuenyResults. java &l 4] m >
DisplayOueryResults2 $1.class -

M | |»] QSUE BLH Line:1 Col4 Code:s® Top:1
owse | Find | Debug | Workbench | (%] currentw... | [%] DisplayCh...

mpile Messages |/ JGRASP Messages |/Hun G |

End L ----3GRASF: operation complete.

- ——-—-]GR43P exec: Jjava DisplayChariequence
Clear
jE— MMM MERFRRAR AKFARR AKR AFF AR AR A A AKE
Help | ----3GRA43P: operation complete.

- ———-=]GRAST exec: java DisplayCharSecquence

MITITTTIREMas s AP AR AREAFE AFRAKR AKPFRERFFE
-———]GRASP: operation complete.

- =——==]GRASP exec: java DisplavChariecquence

MR MM AR AR AR AR AR AR AR ARE AR AL
-———-jGEASP: operation complete.

|

‘| M | b

Example — Repeated Thread Execution

e This next example demonstrates how to schedule a thread to
run multiple times. Basically, the thread updates a GUI-
based clock every second.

.-__. .-__

i Basic Clock d E El

Tue Aug 30 11:08:30 GMT-05:00 2005

N

Sample
GUI

COP 4610L: Threading Part 1 Page 32 Mark Llewellyn © e

//displays current time — threaded execution
import java.util_*;

import javax.swing.JFrame;

Iimport java.text.™;

import java.awt.*;

public class BasicClock extends TimerTask {
final static long MILLISECONDS PER_SECOND = 1000;
private JFrame window = new JFrame(“Basic Clock™);
private Timer timer = new Timer();

private String clockFace = *“7; Two tasks: (1) configure the GUI
and (2) schedule the thread to
//constructor for clock update the GUI-clock every

public BasicClock(){ second.
//set up GUI

window.setDefaultCloseOperation(JFrame.EXIT _ON _CLOSE);
window.setSi1ze(200,60);

Container c¢ = window.getContentPane();
c.setBackground(Color .WHITE);

window.setVisible(true);

//update GUI every second beginning immediately
timer.schedule(this,0,1*MILLISECONDS PER_SECOND) ;

¥ ____
This form of the overloaded schedule() method is

the second one shown on page 8 which uses a
delay and a repetition factor.

COP 4610L: Threading Part 1 Page 33 Mark Llewellyn ©

Date() returns current time to the
millisecond. toString() method returns a
D@ﬁ' textual representation of the date in the
— — form: wecdhmszy
Where: w: 3 char-rep of day of week
c: 3 char-rep of month
d: 2 digit-rep of day of month
h: 2 digit-rep of hour
m: 2 digit-rep of minute within hr
s: 2 digit-rep of second within min
//display updated clock z: 3 char-rep of time zone
public void run(Q{ y: 4 char-rep of year
Date time = new Date();
Graphics g = window.getCpontentPane() .getGraphics();
g.-setColor(Color . WHITE);
g.-drawString(clockFace, (10, 20);
clockFace = time.toString();
g-setColor(Color.BLUE);
g-drawString(clockFace,10, 20);

£ Basic Clock

by

//main

public static void main (String[] args) {

BasicClock clock = new BasicClock();

+

+
——L
(-H

COP 4610L: Threading Part 1 Page 34 Mark Llewellyn © %}J

ITCAUTION !

Java provides two different standard classes named Timer. The class
we’ve used In the past two examples is part of the utal API. There is
also a Taimer class that is part of the swing API.

In our previous example, we needed to make sure that we didn’t
inadvertently bring both Timer classes into our program which would

have created an ambiguity about which Timer class was being used.

Although you cannot import both Timer classes into a single Java
source file, you can use both Timer classes in the same Java source file.
An 1mport statement exists to allow a syntactic shorthand when using
Java resources; I.e., an import statement is not required to make use of
Java resources. Using fully qualified class names will remove the
ambiguity.

java.util. Time t1 = new java.util. Timer();

javax.swing.Timer t2 = new javax swing.Timer();

COP

p
4610L: Threading Part 1 Page 35 Mark Llewellyn © @_ﬁ

Example — Thread Execution At Specific Time

e This next example demonstrates how to schedule a thread to
run at a specific time. This example will create a couple of
threads to remind you of impending appointments.

Basically, the thread pops-up a window to remind you of the
appointment.

Mark's Message Service ['S_q

@ Undergraduate Committee Meeting: Tue Aug 30 13:23:00 GMT-05:00 2005

OK

AN

Sample
DisplayAlert
Window

COP 4610L: Threading Part 1 Page 36 Mark Llewellyn © e

//Displays an alert at a specific time - threaded execution
import javax.swing.JOptionPane;
import java.awt.™;
import java.util._.*;

public class DisplayAlert extends TimerTask {
//instance variables
private String message;
private Timer timer;

//constructor
public DisplayAlert(String s, Date t){ : :
message = s + "1 " + t; Third version of
timer = new Timer(); schedule() method as
timer.schedule(this, t); shown on page 28.
+

//execute thread
public void run() {
JOptionPane.showMessageDialog(null, message, “Mark”’s Message
Service”, JOPtionPane. INFORMATION_MESSAGE); //application specific task
timer.cancel(); //kill thread
+

COP 4610L: Threading Part 1 Page 37 Mark Llewellyn ©

public static void main(String[] args) {
Calendar c = Calendar.getlnstance();
c.set(Calendar .HOUR_OF DAY, 13);
c.set(Calendar .MINUTE, 23);
c.set(Calendar.SECOND, 0);

Date meetingTime = c.getTime();
c.set(Calendar .HOUR_OF DAY, 15);
c.set(Calendar .MINUTE, 25);
c.set(Calendar.SECOND, 0);

Date classTime = c.getTime();

Create two messages
to be displayed at
different times.

DisplayAlert alertl = new DisplayAlert('Undergraduate
Committee Meeting', meetingTime);
DisplayAlert alert2 = new DisplayAlert(""COP 4610L Class

Time", classTime);

COP 4610L: Threading Part 1 Page 38

Mark Llewellyn ©

Sleeping

e In the three examples so far, all the threads performed some
action. Threads are also used to pause a program for some
period of time.

« Standard class jJava.lang.Thread has a class method
sleep () for pausing the flow of control.

public static void sleep (long n) throws InterruptedException

 For example, the following code segment will twice get and
display the current time, but the time acquisitions are
separated by 10 seconds by putting the process to sleep.

p
COP 4610L: Threading Part 1 Page 39 Mark Llewellyn © @_ﬁ

//11lustrates putting a process to sleep
import java.util.™;

public class ShowSleeping {
public static void main(String[] args) {

Date tl1 = new Date();
System.out.printIn(*“Thread goes to sleep at: “ +

tl);

try { —
Thread.sleep(10000); Put the process to sleep
} for 10 seconds.
catch (InterruptedException e) {
+
Date t2 = new Date();
System.out.printIn(*Thread wakes up at: “ + t2);
+
}

I ———————————————————————_———

COP 4610L: Threading Part 1 Page 40 Mark Llewellyn © %}j

Project Messages Settings Window Tools UL Help

mpile Messages | IGRASP Messanes |’Fum 10 |

End 4 - ———-—-]GREASP exec: jawa Showdleeping

Clear Thread goes to sleep at: Tue Aug 30 15:05:37 GMT-05:00 2005
Thread wakez up at: Tue Aug 30 15:05:47 GMT-05:00 2005

Help . :

il i Ll —----JGB43P: operation complete.

- ———-=JGBRASPF exec: java Showileeping

Thread goezs to =2leep at: Tue fug 30 15:05:53 GMT-05:00 2005

Thread wakes up at: Tue Aug 30 15:06:03 GMT-05:00 2005 <—-——______________________

-—--JGRASP: operation complete.

|

Notice that the process has
slept for exactly 10 seconds
in both cases.

[4] Il [»

Life Cycle of a Thread

« Atany given point in time, a thread is said to be in one of several
thread states as illustrated in the diagram below.

-

{ NEW

Non-executing
threads

o

notify() or
notifyAll()

run() R)
terminates N e e e o

COP 4610L: Threading Part 1 Page 42 Mark Llewellyn © e

Life Cycle of a Thread (cont)

The thread constructor is called
to create a new instance of the

Thread class.

(

{ NEW

Blocked }

\

Waiting }

COP 4610L: Threading Part 1 Page 43 Mark Llewellyn © e

Life Cycle of a Thread (cont)

The start() method is
invoked to designate the
thread as runnable.

{ NEW start() Blocked }

Waiting }

COP 4610L: Threading Part 1 Page 44 Mark Llewellyn ©

Life Cycle of a Thread (cont)

Blocked }

The Java thread
scheduler runs the
thread as the
processor becomes
available

Waiting }

COP 4610L: Threading Part 1 Page 45 Mark Llewellyn ©

Life Cycle of a Thread (cont)

{ MEY Blocked]

Waiting }

If the thread invokes the wait() @

method, it is put into the waiting
state and will remain there until
another thread invokes the notify()
or notifyAll() method.

COP 4610L: Threading Part 1 Page 46 Mark Llewellyn ©

Life Cycle of a Thread (cont)

Blocked }

Waiting }

The thread ends when the
run method terminates.

COP 4610L: Threading Part 1 Page 47 Mark Llewellyn ©

Life Cycle of a Thread (cont)

The thread can become
blocked for various reasons
and will not run again until it
is returned to the runnable
state.

{ NEW

Blocked }

Waiting }

COP 4610L: Threading Part 1 Page 48 Mark Llewellyn ©

Summary of States In The Life Cycle of a Thread

State

Description

New

The thread has been created (its constructor has been invoked), but not
yet started.

Runnable

The thread’s start() method has been invoked and the thread is available
to be run by the thread scheduler. A thread in the Runnable state may
actually be running, or it may be waiting in the thread queue for an
opportunity to run.

Blocked

The thread has been temporarily removed from the Runnable state so
that it cannot be executed. This can happen if the thread’s sleep()
method is invoked, if the thread is waiting on I/O, or if the thread requests
a lock on an object that is already locked. When the condition changes,
the thread will be returned to the Runnable state.

Waiting

The thread has invoked its wait() method so that other threads can
access an object. The thread will remain in the Waiting state until
another thread invokes the notify() or notifyAll() method.

Terminated

The thread’s run() method has ended.

p
COP 4610L: Threading Part 1 Page 49 Mark Llewellyn © @_ﬁ

Life Cycle of a Thread — A Slightly Different View

At any given point in time, a thread is said to be in one of several

thread states as illustrated in the diagram below.

Thread
created

finished

running

interrupt()

wait()

[terminated J

CL N/ N

to finish

Waltfortarget] [Waitfortimeout] [Wait to be]

notified

timeout

interrupt()

K blocked

notify() or
notifyAll()

)

COP 4610L: Threading Part 1

.
Page 50 Mark Llewellyn © @_ﬁ

Life Cycle of a Thread (cont.)

A new thread begins its life cycles in the new state. It remains in this
state until the program starts the thread, which places the thread in the
ready state (also commonly referred to as the runnable state). A
thread in this state is considered to be executing its task, although at
any given moment it may not be actually executing.

When a ready thread begins execution, it enters the running state. A
running thread may return to the ready state if its CPU time slice
expires or its yie ld() method is invoked.

A thread can enter the blocked state (i.e., it becomes inactive) for
several reasons. It may have invoked the join(), sleep(), or
wailt() method, or some other thread may have invoked these
methods. It may be waiting for an I/O operation to complete.

A Dblocked thread can be reactivated when the action which
Inactivated it is reversed. For example, if a thread has been put to
sleep and the sleep time has expired, the thread is reactivated and
enters the ready state.

[
COP 4610L: Threading Part 1 Page 51 Mark Llewellyn © g);

Life Cycle of a Thread (cont.)

A thread iIs terminated if it completes the execution of its
run() method.

The 1sAl1ve() method is used to query the state of a thread.
This method returns true it a thread is in the ready, blocked, or
running state; it returns false if a thread is new and has not
started or if it is finished.

The 1nterrupt() method interrupts a thread in the
following way: If a thread is currently in the ready or running
state, Its interrupted flag is set; if a thread is currently blocked,
It 1s awakened and enters the ready state, and a
java.lang.InterruptedException is thrown.

Threads typically sleep when they momentarily do not have
work to perform. Example, a word processor may contain a
thread that periodically writes a copy of the current document
to disk for recovery purposes.

[
COP 4610L: Threading Part 1 Page 52 Mark Llewellyn © g};

Life Cycle of a Thread (cont)

A runnable thread enters the terminated state when it completes
Its task or otherwise terminates (perhaps due to an error
condition).

At the OS level, Java’s runnable state actually encompasses two
separate states. The OS hides these two states from the JVM,
which sees only the runnable state.

— When a thread first transitions to the runnable state from the new
state, the thread is in the ready state. A ready thread enters the
running state (i.e., begins execution) when the OS assigns the thread
to a processor (this is called dispatching the thread). In most OS,
each thread is given a small amount of processor time — called a
quantum or time slice — with which to perform its task. When the
thread’s quantum expires, the thread returns to the ready state and the
OS assigns another thread to the processor. Transitions between
these states are handled solely by the OS.

p
COP 4610L: Threading Part 1 Page 53 Mark Llewellyn © @_ﬁ

Thread Priorities

Every Java thread has a priority that helps the OS determine
the order in which threads are scheduled.

Java priorities are in the range between MIN_PRIORITY (a
constant of 1) and MAX_PRIORITY (a constant of 10).

Threads with a higher priority are more important to a
program and should be allocated processor time before
lower-priority threads. However, thread priorities cannot
guarantee the order in which threads execute.

By default, every thread IS given priority
NORM_ PRIORITY (a constant of 5). Each new thread
Inherits the priority of the thread that created it.

p
COP 4610L: Threading Part 1 Page 54 Mark Llewellyn © @_ﬁ

Thread Priority Scheduling

Ready threads

Thread.MAX_PRIORITY [Priority10 |

~ Priority9 ﬁ

 Prioiity 8

 Priority7 m

_ Priority6 ﬁ
Thread.NORM_PRIORITY | Priority5 F’ﬁ—’-ﬂ

_ Priority4

_ Priority3

_h

Thread.MIN_PRIORITY —

COP 4610L: Threading Part 1 Page 55 Mark Llewellyn © 6

Creating and Executing Threads

In J2SE 5.0, the preferred means of creating a multithreaded
application i1s to Implement the Runnable interface

(package java.lang) (see earlier examples also) and use
built-in methods and classes to create Threads that
execute the Runnables.

The Runnable interface declares a single method named
run, Runnables are executed by an object of a class that
implements the Executor interface (package
jJava.util.concurrent). This interface declares a
single method named execute.

An Executor object typically creates and managed a group

of threads called a thread pool. These threads execute the
Runnab I e objects passed to the execute method.

[
COP 4610L: Threading Part 1 Page 56 Mark Llewellyn © g);

Creating and Executing Threads (cont.)

The Executor assigns each Runnable to one of the

available threads in the thread pool. If there are no available
threads in the thread pool, the Executor creates a new thread

or waits for a thread to become available and assigns that thread
the Runnab e that was passed to method execute.

Depending on the Executor type, there may be a limit to the
number of threads that can be created. Interface
ExecutorService (package java.util.concurrent) is a
subinterface of Executor that declares a number of other
methods for managing the life cycle of the Executor. An object
that implements this ExecutorService interface can be created
using static methods declared in class Executors (package
Java.util._concurrent). The next examples illustrates

these.

[
COP 4610L: Threading Part 1 Page 57 Mark Llewellyn © g);

Multithreading Example — Sleeping/Waking Threads

// PrintTask class sleeps for a random time from O to 5 seconds
import java.util._Random;

public class PrintTask implements Runnable

{

private int sleepTime; // random sleep time for thread
private String threadName; // name of thread
private static Random generator = new Random();

// assign name to thread
public PrintTask(String name)

{

threadName = name; // set name of thread

// pick random sleep time between 0 and 5 seconds
sleepTime = generator.nextint(5000);
} // end PrintTask constructor

—ﬁ
COP 4610L: Threading Part 1 Page 58 Mark Llewellyn © %}j
il)

Multithreading Example — Sleeping/Waking Threads

// method run i1s the code to be executed by new thread
public void run()

{
{

System.out.printf("%s going to sleep for %d milliseconds.\n",
threadName, sleepTime);

try // put thread to sleep for sleepTime amount of time

Thread.sleep(sleepTime); // put thread to sleep
} // end try
// 1T thread interrupted while sleeping, print stack trace
catch (InterruptedException exception)
{
exception.printStackTrace();
} // end catch
// print thread name
System.out.printf("%s done sleeping\n', threadName);
} // end method run
} // end class PrintTask

COP 4610L: Threading Part 1 Page 59 Mark Llewellyn © g};

Multithreading Example — Create Threads and Execute

// Multiple threads printing at different intervals.
import java.util.concurrent.Executors;
import java.util._.concurrent.ExecutorService;
public class RunnableTester
{
public static void main(String[] args) {
// create and name each runnable
PrintTask taskl new PrintTask("threadl™);
PrintTask task2 new PrintTask('"thread2");
PrintTask task3 new PrintTask('"thread3");

System.out.printin("Starting threads");

// create ExecutorService to manage threads

ExecutorService threadExecutor = Executors.newCachedThreadPool();
// start threads and place in runnable state
threadExecutor.execute(taskl); // start taskl
threadExecutor.execute(task2); // start task?2
threadExecutor.execute(task3); // start task3

threadExecutor.shutdown(); // shutdown worker threads

System.out.printIn("Threads started, main ends\n");
} // end main

} 7/ end class RunnableTester]
(‘ k

COP 4610L: Threading Part 1 Page 60 Mark Llewellyn © %}j

hRASF]

Project Messages 5Settings Window Tools Help

npile Messages erRASP Messages |/Hun 10 |

- ————]GEALSP exec: java FunnableTester Examp|e EXGCUtiOﬂS Of
lear Starting threads RunnableTester.java
threadl going to sleep for 6258 milliseconds.
Help threads going to sleep for 3699 milliseconds.
- thread? going to sleep for 2854 milliseconds.

Threads ztarted, main ends

threadl done sleeping
thread? done sleeping
threads done zleeping

-——-—]GRASP: operation complete.
- ———-]GBAST exec: java RunnahleTezter

3tarting threads

threadl going to sleep for 1845 milliseconds.
threads going to sleep for 1799 millizseconds.
thread: going to sleep for 1975 milliseconds.
Threads started, main ends

threads done zleeping
threadl done sleeping
thread:s done sleeping

-—-—-]GRA3P: operation complete.
- ————]GRAST exec: java RunnableTezter

Starting threads

threadl going to sleep for 4471 milliseconds.
thread: going to sleep for 2777 milliseconds.
Threads started, main ends

threads going to sleep for 37 milliseconds.
threads done sleeping
thread? done sleeping
threadl done zleeping

-———]GRARP: operation complete.

4 Il [y

